Question No.		Mark Scheme	Sub Mark	ΣMark
1 (a)	(i)	The horizontal row of elements in the periodic table of the	1	1
		elements		
	(ii)	Period 3	1	1
(b)		А	1	1
(c)		Т	1	1
(d)		- Form coloured compound	1	1
		- Form complex ion		
		- Act as a catalyst		
		- HasMore than one oxidation number		
		[Any one]		
(e)	(i)	M, E, D	1	1
	(ii)	1. Distance between nucleus and valence electron is nearer.	1	
		2. The force of attraction between nucleus and valence	1	
		electron is stronger		2
	(iii)	Ionic compound	1	1
			TOTAL	9

MARKING SCHEME PAPER 2 SET 2 JUJ CHEMISTRY 2019

Question No.		Mark Scheme	Sub Mark	ΣMark
2(a)	(i)	Nucleon number	1	1
	(ii)	1. Proton	1	
		2. Neutron	1	2
	(iii)		1	1
(b)	(i)	17	1	1
	(ii)	Atom has same number of valence electron	1	1
(c)	(i)	Gas	1	1
	(ii)	1. Particles far apart from each others	1	
		2. Particles move randomly	1	2
		·	TOTAL	9

Question No.		Mark Scheme	Sub Mark	ΣMark
3(a)	(i)	Chemical substance that ionise/dissociate in water to	1	1
		produce H ⁺ ion.		
(b)		1	1	1
(c)	(i)	1 mol of acid ionise in water to produce 1 mol of H^+ ion	1	1

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2019

	(ii)	HA acid : Hydrochloric acid/ Nitric acid	1	
		HB acid : Ethanoic acid	1	2
	(iii)	1. HA acid is strong acid while HB acid is a weak acid.	1	
		2. Concentration of H ⁺ ion in acid HA is higher	1	2
(d)		1. Number of mole of HA acid	1	
		2. Ratio of mole	1	
		3. Correct concentration of NaOH with unit	1	3
		n HA = $\frac{0.1 \times 20}{1000}$ // 0.002 1 mol HA acid reacts with 1 mol NaOH// 0.0002 mol HA acid reacts with 0.002 mol NaOH Concentration = $\frac{0.002 \times 1000}{1000}$ mol dm ⁻³ //0.08 mol dm ⁻³		
		25 mor din 7/0.08 mor din	TOTAL	10

Question No.		Mark Sahama	Sub	ΣMark
Question i to.		Wark Scheme	Mark	
4(a)		Yellow/pale yellow	1	1
(b)	(i)	$0.01//0.2 \ge 0.05//\frac{0.2 \ge 50}{1000}$	1	1
	(ii)	$0.005 // \frac{5.0}{1000} // \frac{1 \times 5.0}{1000}$	1	1
(c)		Sulphuric acid	1	1
(d)	(i)	1. catalyst	1	
		2. concentration	1	
		3.temperature	1	3
	(ii)	<u>Catalyst</u> : 1. Lower the activation energy// provide an alternative routa/path with lower activation energy	1	
		2. Frequency of effective collision between $S_2O_3^{2-}$ and H^+	1	
		 <u>Concentration:</u> Concentration of the solution higher// number of S₂O₃ ²⁻/H ⁺ per unit volume higher Frequency of effective collision between S₂O₃ ²⁻ and H ⁺ ions/Particles increases <u>Temperature</u>: When temperature increases, the kinetic energy of particles increases//when the temperature increases, particles moves faster. Frequency of effective collision between S₂O₃ ²⁻ and H ⁺ ions/ particles increases 	1 1 1 1	2
	I	1	TOTAL	10

Question No.		Mark Scheme	Sub	ΣMark
Question ito.		Wark Scheme		
5 (a)		Chemical cell // voltage cell	1	1
(b)	(i)	Colourless gas bubbles released	1	1
	(ii)	1. Correct formula of reactant and product	1	
		2. Balanced equation	1	2
		-		
		$2H^+ + 2e \rightarrow H_2$		
	(iii)	1. Put burning splinter at the mouth of test tube. Pop sound	1	
		produced.	1	2
		2. Hydrogen gas present		
(c) (d)		1. Replace zinc electrode in beaker A with magnesium	1	1
		electrode //		
		Replace copper electrode in beaker A with silver		
		electrode2. The further the pair of metal in electrochemical series the greater the potential difference produced	1	2
(e)		1 Correct formula of reactant and product	1	
		2 Balanced equation	1	2
		$Cu \rightarrow Cu^{2+} + 2e$	1	2
			TOTAL	11

Question No.		Mark Sahama	Sub	ΣMark
		Wark Schenic	Mark	
6 (a)		Soluble	1	1
(b)	(i)	S : Sodium / potassium carbonat // Na ₂ CO ₃ // K ₂ CO ₃		
		T : Sodium chloride // potassium chloride // NaCl // KCl	1	
U: zinc		U : zinc nitrate // Zn(NO ₃) ₂	1	3
	(ii)	Double decomposition reaction	1	1
	(;;;)	1. Compation of magazanta	1	
	(111)	1. Correct formula of reactants	1	
		2. Correct formula of products	1	2
		$ZnCl_2 + Na_2CO_3 \rightarrow ZnCO_3 + 2NaCl$		
	(iv)	Mass $ZnCO_3 = 0.1 \times 125 \text{ g} // 12.5 \text{ g}$	1	1

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2019

Question No		Mark Scheme	Sub Mark	ΣMark
7 (a)	(i)	1. Homologous series : Ester	1	
		2. Compound Z : Methyl butanoate	1	
		3. Low melting/ boiling point	1	
		4. Forces of attraction between molecules in compound Z is weak.	1	4
	(ii)	1. Alcohol X : Methanol // CH ₃ OH	1	
		2. Carboxylic acid Y: Butanoic acid // C ₃ H ₇ COOH	1	
		3.Correct formula of reactants and products	1	
		$C_{3}H_{7}COOH + CH_{3}OH \rightarrow C_{3}H_{7}COOCH_{3} + H_{2}O$ 4. No of mole of CH ₃ OH 5. Ratio of mole	1	
		6. Mass of Z with unit $n \text{ CH}_{3}\text{OH} = \frac{2}{(12+4+16)} \frac{2}{32} 0.0625$	1	
		1 mol of CH ₃ OH produced 1 mol of C ₃ H ₇ COOCH ₃ // 0.0625 mol of CH ₃ OH produced 0.0625 mol of C ₃ H ₇ COOCH ₃		
		Mass = 0.0625 x [12(5) + 10 + 32] g // 0.0625 x 102 // 6.375 g		6
(b)	(i)	 Ammonia / NH₃ solution Type A : Unvulcanised rubber // Natural rubber Type B : Vulcanised rubber 	1 1 1	

Question No		Marilt Calcana		Sub	ΣMark	
			Iviark Sch	eme	Mark	
	(ii)	Ab	le to compare four properties of	of type A & type B rubber		
			Unvulcanised rubber //	Vulcanised rubber //		
			Туре А	Туре В		
		4	Softer	Harder	1	
		5	Cannot withstand high	Can withstand high		
			temperature	temperature	1	
		6	Less easily oxidised	Easily oxidised	1	
		7	Less elastic	More elastic	1	
		Able to explain type B is more suitable to make tyre compare to type A				
			rubber molecules in type B ru	bber	-	
		9.	prevent rubber molecules slid	e each other easily	1	
		10.	10. Type A rubber easily becomes sticky/soft/easily change			
		shape when high heat/pressure				10
					TOTAL	20

Question No.		Mark Calance		SMoult
		Ivlark Scheme	Mark	ZIVIAIK
8(a)		1. K : Analgesics	1	
		2. L : Antibiotic	1	
		3. M : Psychothearapeutic	1	
		4. Ramli = Paracetamol	1	
		5. Hamid = P	1	
		6. Amins' daughter =enicillin Antidepressen	1	6
(b)		1. Plastic B	1	
		2. Improper disposal cause blockage of drainage /flash	1	
		flood		
		3. Burning of plastic release poisonous / toxic / acidic gas	1	
		4. Reduce, reused and recycle // burn in incinerator	1	4
(c)	(i)	1. Substance P : H ₂ SO ₄ // sulpuric acid	1	
		2. Substance Q : NH ₃ // ammonia	1	
		3. Fertilizer $R = (NH_4)_2 SO_4$		
		4. Fertilizer $S = NH_4NO_3$	1	
			1	
		5. Correct formula of reactants	1	
		6. Correct formula of products	1	6
		$H_2SO_4 + NH_3 \rightarrow (NH_4)_2SO_4 //$		
		$HNO_3 + NH_3 \rightarrow NH_4NO_3$		

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2019

4541/2

(ii)	1. Percent of N ₂ fertilizer R	1	
	$\frac{28}{132}$ x 100 = 21.2 %		
	2. Percent of N ₂ fertilizer S $\frac{28}{80} \times 100 = 35\%$	1	
	3. Fertilizer S	1	
	4. Percentage of nitrogen by mass fertilizer S is higher.	1	4
	TOTAL		20

Question No.		Mark Scheme		Sub Mark	ΣMark
9.	(a)				
	(i)	Exothermic reaction		1	1
		a: neutralisation			
		Heat of neutralisation betwee is 57.3 kJmol ⁻¹	en strong acid and strong alkali	1	
		Expt I	Expt II		
		HCl is a strong acid //	CH ₃ COOH is a weak acid	1+1	
		Ionises completely in	Ionises partially in water	1	
		water	Some of the heat is used to	1	
			ionise the molecules	1	F
		E			5
	(b)				
	(i)	$n = 1.0 \ge 50$ // 0.05		1	
		1000			
		0.05 x 57.3		1	
		2865 J		1	3
	(ii)	Temp change = 2865			
		100 x 4.2	[Total volume = 100 cm^3]	1+1	
		= 6.82 C			3
				1	
	(c)	Plastic cup , thermometer , 5	50 cm ³ measuring cylinder,	1	
		[balance]			
		Procedure :			
		1. Measure 50 cm ³ silver nit	rate solution		
		2. Pour into a plastic cup.		1	
		3. Measure the initial tempe	rature, T ₁		

	4. Add 5.0 g / a little magnesium powder and stir.	1	
	5. Measure the highest temperature, T_2	1	
	To calculate:	1	
	Temp rise = $T_2 - T_1 = T$		
	H=50 x c x T=P	1	
	Heat of displacement $= P / mol$	1	
	$n = 50 \times 1.0$	1	
	1000	1	
	Precaution: stir		
	Measure the highest reading		Max
			8
			20

Question		Mark Scheme		ΣMar
No.			Mark	k
10	(a)	 Add chlorine/ bromine water to the solution. Cl₂ + 2Fe²⁺ → 2Fe³⁺ + 2Cl⁻ // Fe²⁺ → Fe³⁺ + e Fe²⁺ is oxidize to Fe³⁺ Fe²⁺ gives green colour and Fe³⁺ brown colour. 	1 1 1	4
			1	
	(b)	al X is more electropositive than copper.	1	5
	(i)	2. Atom X oxidizes	1	
		3. Cu^{2+} ion reduces to copper	1	
		4. Number of Cu ²⁺ decreases.	1	
		5. Metal Y is less electropositive than copper.	1	
			1	
	(ii)	Y, Cu, X	1	1
	(c)	Materials and apparatus:		7
	(i)	 1 mol dm⁻³ of P nitrate, Q nitrate, R nitrate and S nitrate solutions. Metals P, Q, R and S strips. Sandpaper Test tubes and test tube rack Procedure: Clean/rub the metal strips with the sandpaper. Clean/rub the metal strips with the sandpaper. Pour 5 cm³ of solutions P nitrate, Q nitrate, R nitrate and S nitrate into four separate test tubes. Place a strip of metal A into each of solution into the test tubes. Record any observation after 5 minutes. Repeats steps 2 to 4 using strips of metals Q, R and S to replace metal P. 	1+1 1 1 1 1 1	
	(iii)	Results;		3

		A solution containig						
	Metal	Metal ion P	Metal ion Q	Metal ion R	Metal ion S			
	Р		Х	Х	X			
	Q			х	x			
	R				x			
	S							
	<u> </u>	= rea	action occurs	Х	= no reaction			
	Or					1		
	S can displace all metals P, Q and R.							
	P cannot displace any metals.							
	R can displace metal Q and P.							
	Conclusion:							
	S is most electropositive, P is least electropositive and R is more electropositive than Q.					Max		
	V774 V774 Q174 TAT							
						20		
II	1	1972				1		